The SVM class
(PECL svm >= 0.1.0)
简介
类摘要
预定义常量
SVM Constants
SVM::C_SVC- 
       
The basic C_SVC SVM type. The default, and a good starting point
 SVM::NU_SVC- 
       
The NU_SVC type uses a different, more flexible, error weighting
 SVM::ONE_CLASS- 
       
One class SVM type. Train just on a single class, using outliers as negative examples
 SVM::EPSILON_SVR- 
       
A SVM type for regression (predicting a value rather than just a class)
 SVM::NU_SVR- 
       
A NU style SVM regression type
 SVM::KERNEL_LINEAR- 
       
A very simple kernel, can work well on large document classification problems
 SVM::KERNEL_POLY- 
       
A polynomial kernel
 SVM::KERNEL_RBF- 
       
The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification
 SVM::KERNEL_SIGMOID- 
       
A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network
 SVM::KERNEL_PRECOMPUTED- 
       
A precomputed kernel - currently unsupported.
 SVM::OPT_TYPE- 
       
The options key for the SVM type
 SVM::OPT_KERNEL_TYPE- 
       
The options key for the kernel type
 SVM::OPT_DEGREESVM::OPT_SHRINKING- 
       
Training parameter, boolean, for whether to use the shrinking heuristics
 SVM::OPT_PROBABILITY- 
       
Training parameter, boolean, for whether to collect and use probability estimates
 SVM::OPT_GAMMA- 
       
Algorithm parameter for Poly, RBF and Sigmoid kernel types.
 SVM::OPT_NU- 
       
The option key for the nu parameter, only used in the NU_ SVM types
 SVM::OPT_EPS- 
       
The option key for the Epsilon parameter, used in epsilon regression
 SVM::OPT_P- 
       
Training parameter used by Episilon SVR regression
 SVM::OPT_COEF_ZERO- 
       
Algorithm parameter for poly and sigmoid kernels
 SVM::OPT_C- 
       
The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples.
 SVM::OPT_CACHE_SIZE- 
       
Memory cache size, in MB
 
目录
- SVM::__construct — Construct a new SVM object
 - SVM::crossvalidate — Test training params on subsets of the training data
 - SVM::getOptions — Return the current training parameters
 - SVM::setOptions — Set training parameters
 - SVM::train — Create a SVMModel based on training data